Church Acoustics

Solving Sound System problems only Acoustics can fix.

  • Sponsored by

    Ph # 519-582-4443

    Successfully turning the most complicated, hostile and hardest acoustical spaces into the best sounding worship spaces in the world one church at a time.

  • Archives

  • Contact information of JdB Sound Acoustics qr code

    link to

Posts Tagged ‘Echo’

Dead Spots – Sound System or Acoustics?

Posted by jdbsound on April 9, 2018

An unwelcomed guest in any church is Mr. Deadspots. Unfortunately, deadspots in churches are more common than you think. There are two main types of deadspots. Some are frequency related/comb filtering interference and others are dips in sound levels greater that 6dB created by the room.

It is common to see frequency related deadspots in Left/Right sound system regardless if they are Line Arrays or point and shoot speakers. These deadspots are created by interference patterns in a mono speech system as a persons voice is always mono.  These deadspots are where you shift from one foot to another and notice a sound change. In these cases it becomes a problem when on one foot you hear the highs but not the lows. When you shift your position onto the other foot, you hear the lows and the highs disappear. People with hearing aids or early stages of hearing lose notice this the most. People with good hearing notice the change too but learn quickly to put up with it. Some young people think of it as a passive noise filter. If the music is too bright, stand to one side of your seating position. If the music is too boomy, shift to the other side of your seating position. Really! Isn’t that like buying a headset and controlling the sound changes with what angle you tilt your head. It might sound like a great idea until you find yourself with a lot of neck pain. No thank you.

Sound level dips are usually acoustically related. These are created with standing waves, bass building up, hollow walls, room corners, and parallel surfaces that include walls, ceilings and floors and concaved surfaces. In all of these cases, often mid and bass energy build up and the highs are absorbed with carpets, padded pews and people. By the nature of churches and how they are used, carpeted floors and padded seating often represents how the church sounds when it is 50% full. That means that if your attendance is often over 50%, the effects of padded seating and carpeted floors has little to no impact. If church attendance is often over 70% a carpeted floor makes the room more intimate during times of prayer and solemn reverence. In the end, carpets and padded seating is a good thing.

However, because of people in the room, once that room attendance is above 50% the people absorb enough highs that extra mids and bass energy is left behind as is being amplified between parallel surfaces. This excess energy automatically masks the highs. When the highs are masked, speech and music intelligibility drops. The kicker is, if you go around the room with a sound level meter, often the sound levels don’t drop much, even when you stand in a spot where the highs (when you measure just the highs) drop off over 6dB. That is because the excess bass energy is so strong that it fools the sound meter as the meter is reading an average sound level. When you take sound level readings by frequency, then you notice the high number of deadspots in the room. Get a tone generator in a cell phone or computer app and play a constant tone at 55dB at 500 Hertz, 1000 Hertz and 3000 Hertz and then start walking around. At 500 Hertz you shouldn’t notice much of change until you get close to walls. At 1000 Hertz you will notice more changes. At 3000 Hertz, if you are hearing a lot of changes, imagine what 25% of your church audience is experiencing.

Here is a church that had both acoustical and sound system created deadspots, with a central cluster. By nature of a central cluster, in a good room, it gives the best coverage and performance for speech. There is no better way to design a church sound system unless your ceiling is less than 14 ft. high. Choice of speakers, coverage patterns and speaker placement impacts sound too but these are mainly tone qualities and gain before feedback related. It may have up to a 2 or 3% impact on overall intelligibility as well.

corner view pano Ebeneezer Church_s

In this church example, it already has a fairly good quality speaker system in the ideal location for the room. It is designed as a central cluster and by nature, in this setup, it should perform well. However, it didn’t matter if you used the main speaker system or used portable speakers on stands, with any sound amplified you could find deadspots all over the room. On top of that, if you raised your voice in the room, once you were more than 18 feet from someone, understand what was being said was difficult to impossible depending on dictions of the person talking and how good is one’s hearing. When the proper acoustical fix was applied, all of those problems went away and the church didn’t need to upgrade the speaker system.

The church decided to leave the sound system alone as the gain before feedback improved and all of the deadspots disappeared. Since this is a traditional church that has no intentions to do anything contemporary, the acoustical fix was designed to not change the overall reverb time. Before and after reverb time remained about the same. 1.7 seconds.  It was the frequency response of the room that saw a major change. As the graphs shows below, where the mixer for the worship space was located, it was also one of many spots where weird measurements were recorded before. We found dozens of spots where the room measurements went squirrely. This is typical of the results of measuring a Left/Right speaker system, not a cluster system. These weird results were a result of room acoustics and not the sound system.  We used our own test speaker for all room testing.

Sound Booth Before and After

After checking our test equipment for errors, it was then realized that by just moving the mic over a few inches, you would get a very different result. In some places, the sound was perfectly fine but move over a few inches and it was not. Our ears are about 8 inches apart. In one row of seating, the largest distance we could move the test mic between a good spot and bad spot was 14 inches. Pew seating is 18 inches.  Every seating position had both good and bad sound. What we were measuring was sound masking in the mids and lows.  The energy was so strong that it masked the highs.  Not only that but the highs were most likely also being canceled from nearby wall reflection between 1800 to 5000 Hertz.  It gave the impression that there was something wrong with the sound system.

In this church, people marked their seating positions by placing personal pillows in spots where the sound was better. Sure enough, testing these spots showed better sound before the acoustical treatment was applied. After the acoustical system was installed, the sound was the same no matter where you sat including the sound booth.

Deadspots in churches are more often a result of worship space design and not a result of sound system design (unless you have the wrong speaker system design for your room). When a church replaces a well-designed sound within 10 years, and have little to no overall improvement after an upgrade, that should be a BIG RED FLAG that you most likely have a serious acoustical problem and no amount of money spent on the sound system can make those problems go away. Besides, these days, acoustical fixes cost less than sound system fixes. As a caveat, our experience has been this. Churches that have fixed their acoustics and then wanted on to expand their music programs, they were able to upscale their sound system with a much higher budget as they upgraded, it actually lead to better performance rather than an exchange of one set of problems for another.

Bottom line is, get your church properly tested. Have someone who knows how to properly diagnose the data, and then design your church a proper acoustical management system. Install the acoustical system and watch the congregation respond and grow. Don’t be surprised if other churches want to use your church for musical and recording events. Your property value may go up too.

Note – The acoustical system is made up of 8 and 12 inch half round plaster covered foam diffusers on 3 walls.  The side walls use a gradient pattern to maximize room performance. On the back wall there are 24 units of 7 ft. x 2 ft. x 18 inch plaster covered foam diffusers that are hollow which allows for additional passive room equalizing in the near future. Project completed by church members.

By Joseph De Buglio
JdB Sound Acoustics

Posted in Church Acoustics | Tagged: , , , , , , , , , , , , , , , , , , , , | Leave a Comment »